Spectral distortion constraints on photon injection from low-mass decaying particles

arxiv:2012.07292 accepted in MNRAS

Marcel Grossmann Meeting MG16 - July 2021

Boris Bolliet (Columbia)

With Jens Chluba, Richard Battye (JBCA Manchester)

Spectral distortion constraints on photon injection from low-mass decaying particles

arxiv:2012.07292 accepted in MNRAS

Marcel Grossmann Meeting MG16 - July 2021

Boris Bolliet (Columbia)

With Jens Chluba, Richard Battye (JBCA Manchester)

Decay/Annihilation of relic particles with coupling to photons/EM

Constraints on DM cross-section

$$egin{aligned} \dot{\mathcal{Q}}_{\chi} &= rac{3}{2} n_{\chi} \Gamma_{\chi s} (T_s - T_{\chi}), \ \Gamma_{\chi s} &\equiv rac{2}{3} rac{m_{\chi}
ho_s}{(m_{\chi} + m_s)^2} rac{\langle \sigma_{\chi s}(v) v^3
angle}{v_{ ext{th}}^2} \end{aligned}$$

See e.g., Ali-Haïmoud, Chluba, Kamionkowski (1506.04745), Ali-Haïmoud (2101.04070)

See e.g., Chluba (1506.06582), Poulin, Serpico, Lesgourgues (1610.10051)

 When injected photon don't have time to scatter/comptonize, simple µ and y-distortions are not sufficient to characterize the CMB spectrum post-injection

Standard distortion shapes with long lifetime Relative intensity with respect to black-body 10¹ $x_{\rm inj,0} = 10^{-8}$ 10 $\Gamma_{\chi} < 10^{-20}$ 10^{-6} 10^{11} 10⁴ 10¹⁰ 10-4 10 [Jy/sr] 10² Intensity peaks at 10 $\begin{bmatrix} 10^{6} \\ 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{2} \\ 10^{2} \end{bmatrix}$ the rest mass of the particle Intensity, Δl_{χ} 10⁰ 10 10 10⁻¹⁰ 10 10^{-2} 10 10^{-2} 10^{-3} 10^{-} 10 10⁻² 10^{-1} 10⁰ 10¹ 10^{-3} 10^{-5} 10^{-4} 10⁻⁹ 10⁻⁷ 10⁻⁶ 10^{-2} 10⁻⁸ 10^{-5} 10^{-4} 10^{-3} 10⁻¹ 10⁰ 10¹ 10^{2} 10^{3} 10^{4} Scaled Frequency, $x = hv/k_{\rm B}T_{\rm CMB}$

Frequency

Extract constraints that take into account the full distortion spectrum

Typical distortions from decaying particles into photons

Chluba, Sunyaev 1109.6552

- Challenging numerical problem: photon and electron energy/temperature equations need to be solved simultaneously + ionization history
- Reionization (Poulin, Serpico, Lesgourgues 1508.01370)
- Refined treatment of HeI, HeII (Chluba, Ali-Haïmoud 1510.03877)
- Recombination with **Recfast** (Slatyer, Chluba,...)
- All codes run from Specdist

specdist https://github.com/CMBSPEC/specdist

Python package to study spectral distortions of the cosmic microwave background radiation.

● Python 4 MIT 😵 0 ☆ 1 ⊙ 0 \$\$0 Updated on Mar 17

Two-photons decay $X o \gamma + \gamma$ $E_{\rm inj} = h v_{\rm inj} = m_X c^2/2$ $E_{\rm inj} = h v_{\rm inj} = E_X^{\rm ex}$ $X^* \to X + \gamma$ **Excited states** $d \ln a^3 N_X$ $-\Gamma_X$ Decay rate dictates when the injection happens d*t* y era μ -y transition μ era 10-18 Energy Release History, $\propto dln(a^4 \rho_y)/dt$ 10⁶ μ era $\rho_{\rm m} = \rho_{\rm rad}$ Maximum Injection Redshift, z_{χ} 10¹ 10² 10¹ 10-165. µ-y transition 5 × 10-14 5 10-11 5-10 × 5 $\rho_{\rm m} = \rho_{\rm rad}$ Radiation Era Approx. $z_X \propto \Gamma_X^{2/3}$ --- Matter Era Approx. $z_X \propto \Gamma_X^{1/2}$ y era Recombination transition ecombinatio Reionization Reionizati era 10⁰ H 10^{-1} 10^{-16} 10^{-14} 10⁻¹² 10^{-8} 10⁰ 10¹ 10² 10³ 10⁵ 10^{-10} 10^{-1} 104 10⁶ 10^{-6} Redshift, z Decay Rate, Γ_X [s⁻¹]

• Determines the type of distortion and change in ionisation history

• Line (narrow Gaussian) at the rest-mass energy of the particle

$$\frac{\mathrm{d}n_x}{\mathrm{d}t}\Big|_{\mathrm{inj}} = \mathcal{G}_2 f_{\mathrm{inj}} \Gamma_X \exp\left(-\Gamma_X t\right) \times \frac{G\left(x, x_{\mathrm{inj}}, \sigma_x\right)}{x^2}$$

Normalization of the spectrum proportional to abundance/DM fraction

$$f_{\rm inj} \approx 1.31 \times 10^4 \; \frac{\epsilon f_{\rm dm}}{x_{\rm inj,0}} \left[\frac{\Omega_{\rm cdm} h^2}{0.12} \right]$$

- Compare distortion versus measured CMB intensity to obtain constraints on mass, DM fraction and lifetime
- CMB spectra data from COBE/FIRAS
 + EDGES brightness temperature at 78MHz

$$I(\nu) = B(T_0) + \Delta T \left. \frac{\partial B}{\partial T} \right|_{T_0} + \mu \left. \frac{\partial S_{\mu}}{\partial \mu} \right|_{T_0} + y \left. \frac{\partial S_{y}}{\partial y} \right|_{T_0} + G_0 g(\nu).$$

Use perturbed recombination as complementary constraints from CMB anisotropy

Perturbation of CMB TT spectra (bottom) from eigenmodes of recombination history (top)

• Planck CMB TT.TE.EE data and projection method from Hart & Chluba (1912.04682)

Comparison of constraints from CMB anisotropy and y-distortion limits, for low-frequency injection

Spectrometer beats CMB anisotropy constraints !

Library of spectra using specdist/cosmotherm

- Fast computation of spectra at any point in parameter space with interpolation
- Emulator for spectral distortions/ionisation histories (next step)

Model independent constraints from full spectra

MG16

• Decay rate enhanced in ambient CMB photons bath Caputo, Regis, Taoso, Witte 1811.08436 Frequency dependent term

 $n_{\gamma}(x_{\rm inj}) \approx (1+z)/x_{\rm inj,0}$ for $x_{inj} \lesssim 1$

 $\Gamma_X^{\text{stim}} \approx [1 + 2n_\gamma(x_{\text{inj}})]\Gamma_X$

Particles decay earlier than they would have in vacuum

- 'Tilted' constraints regions towards long life-time compared to non-stimulated decay
- Complementarity with other constraints (e.g, Roach et al 1908.09037, sterile neutrino)
- Constraints can be translated to specific particle physics models

- First constraints from full distortion spectra calculations
- Still harvesting insights into dark matter from 30 years old COBE/FIRAS data

Next steps

- Machine learning to alleviate computationally expensive calculations
- Turning current work into forecast analysis